Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710921

RESUMEN

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Asunto(s)
Administración Intranasal , Encéfalo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glicéridos , Mucosa Nasal , Tamaño de la Partícula , Verapamilo , Administración Intranasal/métodos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Verapamilo/administración & dosificación , Verapamilo/farmacocinética , Distribución Tisular , Glicéridos/química , Mucosa Nasal/metabolismo , Disponibilidad Biológica , Ratas , Bloqueadores de los Canales de Calcio/farmacocinética , Bloqueadores de los Canales de Calcio/administración & dosificación , Poloxámero/química , Masculino , Química Farmacéutica/métodos , Ratas Wistar , Nanopartículas/química
2.
Sci Rep ; 14(1): 6361, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493177

RESUMEN

Loratadine (LoR) is a highly lipophilic and practically insoluble in water, hence having a low oral bioavailability. As it is formulated as topical gel, it competitively binds with the receptors, thus reducing the side-effects. The objective of this study was to prepare LoR loaded nanosponge (LoR-NS) in gel for topical delivery. Nine different formulations of emulsion were prepared by solvent evaporation method with polyvinyl alcohol (PVA), ethyl cellulose (EC), and dichloromethane (DCM). Based on 32 Full Factorial Design (FFD), optimization was carried out by varying the concentration of LOR:EC ratio and stirring rate. The preparations were subjected for the evaluation of particle size (PS), in vitro release, zeta potential (ZP) and entrapment efficiency (EE). The results revealed that the NS dispersion was nanosized with sustained release profiles and significant PS. The optimised formulation was formulated and incorporated into carbopol 934P hydrogel. The formulation was then examined to surface morphological characterizations using scanning electron microscopy (SEM) which depicted spherical NS. Stability studies, undertaken for 2 months at 40 ± 2 °C/75 ± 5% RH, concluded to the stability of the formulation. The formulation did not cause skin irritation. Therefore, the prepared NS hydrogel proved to be a promising applicant for LoR as a novel drug delivery system (NDDS) for safe, sustained and controlled topical application.


Asunto(s)
Hidrogeles , Loratadina , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...